Design and lumped parameter magnetic network model of hybrid excited consequent pole flux switching machine

Author:

Ullah Basharat,Khan Faisal,Khan Bakhtiar,Yousuf Muhammad

Abstract

Purpose The purpose of this paper is to analyze electromagnetic performance and develop an analytical approach to find the suitable coil combination and no-load flux linkage of the proposed hybrid excited consequent pole flux switching machine (HECPFSM) while minimizing the drive storage and computational time which is the main problem in finite element analysis (FEA) tools. Design/methodology/approach First, a new HECPFSM based on conventional consequent pole flux switching permanent machine (FSPM) is proposed, and lumped parameter magnetic network model (LPMNM) is developed for the initial analysis like coil combination and no-load flux linkage. In LPMNM, all the parts of one-third machine are modeled which helps in reduction of drive storage, computational complexity and computational time without affecting the accuracy. Second, self and mutual inductance are calculated in the stator, and dq-axis inductance is calculated using park transformation in the rotor of the proposed machine. Furthermore, on-load performance analysis, like average torque, torque density and efficiency, is done by FEA. Findings The developed LPMNM is validated by FEA via JMAG v. 19.1. The results obtained show good agreement with an accuracy of 96.89%. Practical implications The proposed HECPFSM is developed for high-speed brushless AC applications like electric vehicle (EV)/hybrid electric vehicle (HEV). Originality/value The proposed HECPFSM offers better flux regulation capability with enhanced electromagnetic performance as compared to conventional consequent pole FSPM. Moreover, the developed LPMNM reduces drive storage and computational time by modeling one-third of the machine.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Reference36 articles.

1. Review of double stator flux switching machines with various arrangements of excitation sources;Alexandria Engineering Journal,2021

2. Proposal of self‐excited wound‐field magnetic-modulated dual-axis motor for hybrid electric vehicle applications;IET Electric Power Applications,2018

3. Analytical design of a high-torque flux-switching permanent magnet machine by a simplified lumped parameter magnetic circuit model,2010

4. A novel hybrid-excited switched-flux brushless AC machine for EV/HEV applications;IEEE Transactions on Vehicular Technology,2011

5. Partitioned stator hybrid excited machine with DC-Biased sinusoidal current;IEEE Transactions on Industrial Electronics,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3