Method of analysis of asymmetrical thermal field in a double insulated wire
-
Published:2017-07-03
Issue:4
Volume:36
Page:1075-1088
-
ISSN:0332-1649
-
Container-title:COMPEL - The international journal for computation and mathematics in electrical and electronic engineering
-
language:en
-
Short-container-title:COMPEL
Author:
Golebiowski Jerzy,Zareba Marek
Abstract
Purpose
The purpose of this article is investigating the impact of the spatially variable heat transfer coefficient on the thermal field in the double insulated wire.
Design/methodology/approach
The effect of the air boundary layer was modelled by means of changing the total heat transfer coefficient on the external perimeter of the wire. This leads to an elliptical boundary problem with Hankel’s condition dependent on the angular coordinate. The eigenfunctions of the problem were determined analytically. On the other hand, the unknown coefficients of eigenfunctions and the constants were calculated numerically by solving a respective system of algebraic equations. The steady state current rating was determined with an iterative method.
Findings
By means of the presented method, the thermal field distribution deprived of axial symmetry in the double insulated wire was determined. The obtained results have good physical interpretation and were verified with the finite element method (by means of NISA v. 16 software). The determined values of the steady-state current rating were compared with those calculated by means of the equivalent heat transfer coefficient method and the International Electrotechnical Commission (IEC) standard.
Research limitations/implications
The method is applied to analyse scalar fields in layered cylindrical structures. This could be expanded to the case of a wire of any number of insulation layers. What is more, one could also consider heat sources without axial symmetry and located within the external area.
Originality/value
The analytical method of determining a thermal field deprived of axial symmetry in heterogeneous cylindrical system (the wire composed of three different materials) was developed.
Subject
Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications
Reference21 articles.
1. Finite element differential forms on cubical meshes;Mathematics of Computation,2014
2. Natural convection around a horizontal cylinder: the effect of vertical confinement;International Journal of Heat and Mass Transfer,2003
3. The temperature field in a cylindrical electric conductor with annular section;International Journal of Heat and Mass Transfer,1995
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献