Author:
de Falco Carlo,Di Rienzo Luca,Ida Nathan,Yuferev Sergey
Abstract
PurposeThe purpose of this paper is the derivation and efficient implementation of surface impedance boundary conditions (SIBCs) for nonlinear magnetic conductors.
Design/methodology/approachAn approach based on perturbation theory is proposed, which expands to nonlinear problems the methods already developed by the authors for linear problems. Differently from the linear case, for which the analytical solution of the diffusion equation in the semi-infinite space for the magnetic field is available, in the nonlinear case the corresponding nonlinear diffusion equation must be solved numerically. To this aim, a suitable smooth map is defined to reduce the semi-infinite computational domain to a finite one; then the diffusion equation is solved by a Galerkin method relying on basis functions constructed via the push-forward of a Lagrangian polynomial basis whose degrees of freedom are collocated at Gauss–Lobatto nodes. The use of such basis in connection with a suitable under-integration naturally leads to mass-lumping without impacting the order of the method. The solution of the diffusion equation is coupled with a boundary element method formulation for the case of parallel magnetic conductors in terms of E and B fields.
FindingsThe results are validated by comparison with full nonlinear finite element method simulations showing very good accordance at a much lower computational cost.
Research limitations/implicationsLimitations of the method are those arising from perturbation theory: the introduced small parameter must be much less than one. This implies that the penetration depth of the magnetic field into the magnetic and conductive media must be much smaller than the characteristic size of the conductor.
Originality/valueThe efficient implementation of a nonlinear SIBC based on a perturbation approach is proposed for an electric and magnetic field formulation of the two-dimensional problem of current driven parallel solid conductors.
Subject
Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications
Reference22 articles.
1. Eddy current losses in solid and laminated iron;AIEE Transactions,1959
2. The use of surface impedance boundary conditions in time domain problems: numerical and experimental validation;ACES Journal,2004
3. Simple equations for the magnetization and reluctivity curves of steel;IEEE Transactions on Magnetics,1975
4. Transient eddy current analysis for generalized structures using surface impedances and the fast Fourier transform;IEEE Transactions on Magnetics,1990
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献