Finite set model predictive control to a shunt multilevel active filter

Author:

Saldías Molina Hernaldo,Dixon Rojas Juan,Morán Tamayo Luis

Abstract

Purpose – The purpose of this paper is to implement a finite set model predictive control algorithm to a shunt (or parallel), multilevel (cascaded H-bridge) active power filter (APF). Specifically, the purpose is to get a controller that could compensate the mains current and, at the same time, to control the voltages of its capacitors. This strategy avoids the use of multiple PWM carriers or another type of special modulator, and requires a relatively low processing power. Design/methodology/approach – This paper is focussed in the application of the predictive controller to a single-phase parallel APF composed for two H-bridges connected in series. The same methodology can be applied to a three-phase APF. In the DC buses of each H-bridge, a floating capacitor was connected, whose voltage is regulated by the predictive controller. The controller is composed by, first, a model for the charge/discharge dynamics for each floating capacitor and a model for the output current of the APF; second, a cost function; and third, an optimization algorithm that is able to control all these variables at the same time, choosing in each sample period the best combination of firing pulses. Findings – The controller can track the voltage references, compensate the current harmonics and compensate reactive power with an algorithm that evaluates only the three nearest voltage levels to the last voltage level applied in the inverter. This strategy decreases the number of calculations required by the predictive algorithm. This controller can be applied to the general case of a single-phase multilevel APF of N-levels and extend it to the three-phase case without major problems. Research limitations/implications – The implemented controller, when the authors consider a constant sample time, gives a mains current with a Total Harmonic Distortion (THD-I) slightly greater in comparison with the base algorithm (that evaluates all the voltage levels). However, when the authors consider the processing times under the same processor, the implemented algorithm requires less time to get the optimal values, can get lower sampling times and then a best performance in terms of THD-I. To implement the controller in a three-phase APF, a faster Digital Signal Processor would be required. Originality/value – The implemented solution uses a model for the charge/discharge of the capacitors and for the filter current that enable to operate the cascaded multilevel inverter with asymmetrical voltages while compensates the mains currents, with a predictive algorithm that requires a relatively low amount of calculations.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3