Author:
Li Hongwei,Wang Xiao,Lin Junmu,Wu Lei,Liu Tong
Abstract
Purpose
This study aims to provide a solution of the power flow calculation for the low-voltage ditrect current power grid. The direct current (DC) power grid is becoming a reliable and economic alternative to millions of residential loads. The power flow (PF) in the DC network has some similarities with the alternative current case, but there are important differences that deserve to be further concerned. Moreover, the dispatchable distributed generators (DGs) in DC network can realize the flexible voltage control based on droop-control or virtual impedance-based methods. Thus, DC PF problems are still required to further study, such as hosting all load types and different DGs.
Design/methodology/approach
The DC power analysis was explored in this paper, and an improved Newton–Raphson based linear PF method has been proposed. Considering that constant impedance (CR), constant current (CI) and constant power (CP) (ZIP) loads can get close to the practical load level, ZIP load has been merged into the linear PF method. Moreover, DGs are much common and can be easily connected to the DC grid, so V nodes and the dispatchable DG units with droop control have been further taken into account in the proposed method.
Findings
The performance and advantages of the proposed method are investigated based on the results of the various test systems. The two existing linear models were used to compare with the proposed linear method. The numerical results demonstrate enough accuracy, strong robustness and high computational efficiency of the proposed linear method even in the heavily-loaded conditions and with 10 times the line resistances.
Originality/value
The conductance corresponding to each constant resistance load and the equivalent conductance for the dispatchable unit can be directly merged into the self-conductance (diagonal component) of the conductance matrix. The constant current loads and the injection powers from dispatchable DG units can be treated as the current sources in the proposed method. All of those make the PF model much clear and simple. It is capable of offering enough accuracy level, and it is suitable for applications in DC networks that require a large number of repeated PF calculations to optimize the energy flows under different scenarios.
Subject
Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications
Reference29 articles.
1. Minimum-loss network reconfiguration: a minimum spanning tree problem;Sustain. Energy Grids Netw,2015
2. Network reconfiguration in distribution systems for loss reduction and load balancing;IEEE Transactions on Power Delivery,1989
3. Optimal placement of capacitors in radial distribution system using a Fuzzy-GA method;International Journal of Electrical Power and Energy Systems,2008
4. Renewable energy resources: current status, future prospects and their enabling technology;Renewable and Sustainable Energy Reviews,2014
5. Optimal power flow in direct current networks;IEEE Transactions on Power Systems,2014
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献