Author:
Hashemi Ali,Yazdanpanah Qaraei Parsa,Shabanian-Poodeh Mostafa
Abstract
Purpose
The aim of this paper is to provide a simple yet accurate and efficient geometric method for thermal homogenization of impregnated and non-impregnated coil winding technologies based on the concept of thermal resistance.
Design/methodology/approach
For regular windings, the periodic microscopic cell in the winding space is identified. Also, for irregular windings, the average microscopic cell of the winding is determined. An approximation is used to calculate the thermal resistance of the winding cell. Based on this approximation, the winding insulation is considered as a circular ring around the wire. Mathematical equations are obtained to calculate the equivalent thermal resistance of the cell. The equivalent thermal conductivity of the winding is calculated using equivalent thermal resistance of the cell. Winding thermal homogenization is completed by determining the equivalent thermal properties of the cell.
Findings
The thermal pattern of different windings is simulated and compared with the results of different homogenization methods. The results show that the proposed method is applicable for a wide range of windings in terms of winding scheme, packing factor and winding insulation. Also, the results show that the proposed method is more accurate than other winding homogenization methods in calculating the equivalent thermal conductivity of the winding.
Research limitations/implications
In this paper, the change of electrical resistance of the winding with temperature and thermal contact between the sub-components are ignored. Also, liquid insulators, such as oils, and rectangular wires were not investigated. Research in these topics is considered as future work.
Originality/value
Unlike other homogenization methods, the proposed method can be applied to non-impregnated and irregular windings. Also, compared to other homogenization methods, the proposed method has a simpler formulation that makes it easier to program and implement. All of these indicate the efficiency of the proposed method in the thermal analysis of the winding.
Reference31 articles.
1. Estimation of equivalent thermal conductivity for electrical windings with high conductor fill factor,2018
2. Equivalent thermal conductivity determination of winding insulation system by fast experimental approach,2015
3. Hashin–Shtrikman bounds on the effective thermal conductivity of a transversely isotropic two-phase composite material;Journal of Mathematical Chemistry,2015
4. Review of multidisciplinary homogenization techniques applied to electric machines,2016
5. A note on the effective magnetic permeability of polycrystals;IEEE Transactions on Magnetics,2007