A high-efficiency micromixing effect by pulsed AC electrothermal flow

Author:

Hadjiaghaie Vafaie Reza

Abstract

Purpose The on-chip high-throughput mixing process is one of the main challenges in the preparation process in clinical diagnostics. Because of high laminar flow in micro-channel, the fluid should be disturbed by external force. This paper aims to study pulsed AC electrothermal flow and the multiphysic interaction between the fluid behavior, external electric field, temperature field and convection-diffusion field to generate perturbation effect inside the channel. Design/methodology/approach A set of numerical simulations were carried out by multiphysic interactions between the fluid behavior, external electric field, temperature field and convection-diffusion field to generate the pulsed AC electrothermal flow inside the channel. Behavior of electrode–electrolyte system is discussed using the electrical lumped circuit model. Findings Highly efficient temperature gradients are generated by applying pulsed electric potential over the electrodes; as a result, efficient secondary flows form inside the channel. The proposed method increases the interfacial contact area between the fluids and enhances the molecular diffusion transport phenomena. Maximum temperature rise of 4.1 K is observed in the gap between the electrodes for 0.08 S/m fluid medium, where the electric field is much stronger than elsewhere. Velocity field and concentration analysis reveal high performance perturbation effects for the mixing process. The periodic stretching and folding effects increase the interfacial contact area between the fluids by using pulsed AC electrothermal flow. Based on the results, 83 per cent mixing efficiency is achieved for 0.08 S/m fluid medium with a microchannel length of 400 µm. Both the mixing efficiency and generated temperature rise increase by increasing the fluid ionic strength. Originality/value The ability to generate low temperature rise is very important for AC electrothermally driven fluidic chips such as immunoassay chips. In the present research, a novel actuation mechanism has been proposed to generate AC electrothermal manipulation mechanism and enhance the mixing efficiency by using pulsed AC electrothermal flow.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Reference43 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigations on fluid flow and mixing in fractal tree like biomimetic microchannel based on Murray's law;Chemical Engineering and Processing - Process Intensification;2023-12

2. Comparative assessment of mixing characteristics and pressure drop in spiral and serpentine micromixers;Chemical Engineering and Processing - Process Intensification;2021-05

3. AC Electrothermal Effect in Microfluidics: A Review;Micromachines;2019-11-11

4. Microfluidic Magnetic Mixing at Low Reynolds Numbers and in Stagnant Fluids;Micromachines;2019-10-29

5. Numerical simulation of EWOD on a printed circuit board for cleanroom-less digital fluidic manufacturing applications;COMPEL - The international journal for computation and mathematics in electrical and electronic engineering;2019-01-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3