Author:
von Pfingsten Georg,Nell Martin Marco,Hameyer Kay
Abstract
Purpose
Induction machines for traction applications are operated at working points of high ferromagnetic saturation. Depending on the working point, a broad spectrum of harmonic frequencies appears in the magnetic flux density of induction machines. Detailed loss analysis therefore requires local and temporal highly resolved nonlinear field computation. This loss analysis can be performed in the post processing of nonlinear transient finite element simulations of the magnetic circuit. However, it takes a large number of transient simulation time steps to build up the rotor flux of the machine.
Design/methodology/approach
In this paper, hybrid simulation approaches that couple static FEA, transient FEA and analytic formulations to significantly decrease the number of simulation time steps to calculate the magnetic field in steady state are discussed, analyzed and compared.
Findings
The proposed hybrid simulation approaches drastically decrease the simulation time by shortening the transient build-up of the rotor flux. Depending on the maximum error of the rotor flux linkage amplitude compared to the steady state value, a reduction of simulation time steps in the range of 55.5 to 98 per cent is found.
Originality/value
The presented hybrid simulation approaches allow efficient performing of the transient FE magnetic field simulations of induction machines operated as traction drives.
Subject
Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献