Dynamic electromechanical eddy current force modeling

Author:

Paudel Nirmal,Paul Subhra,Z. Bird Jonathan

Abstract

Purpose – The purpose of this paper is to validate dynamic analytic force modeling techniques with experimental results. The performance of previously presented 2-D and 3-D eddy current models will be assessed when the steady-state models are coupled to a dynamic mechanical model. Design/methodology/approach – The previously presented 2-D analytic model was formulated in terms of the magnetic vector potential in conductive region and magnetic scalar potential in non-conductive region whereas the 3-D model was formulated in terms of the magnetic vector potential in both the conductive and non-conductive regions. Findings – This paper experimentally confirms that incorporating the heave velocity term is important for accurately predicting the forces under dynamic mechanical motion while using a steady-state eddy current solution. A close agreement between the experimental and the dynamic analytic-based eddy current solution was achieved. Research limitations/implications – The force results presented from the previously developed 3-D analytic model assume that the width of the guideway is larger than that of the magnetic source and the magnetic source is placed at the center of the guideway along the z-axis. Practical implications – The rotational and translational motion of a permanent magnet rotor above a conductive plate create lift and thrust force that are suitable for magnetic levitated (maglev) transportation. The previously developed 2-D and 3-D analytic models are fundamental to such maglev research as the models can quickly compute the electromagnetic forces acting on the maglev vehicle. This paper is of immense importance as the paper experimentally validates the analytic models. Originality/value – The quasi-static analytic eddy current force models that are validated in this paper are different to analogous models developed by prior authors in that the heave velocity as well as the translational velocity of a magnetic source is incorporated into the eddy current force equation.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Electrodynamic Wheel Magnetic Rolling Resistance;IEEE Transactions on Magnetics;2017-08

2. A 3-D analytic eddy current model for a finite width conductive plate;COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering;2013-12-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3