Singularity consideration in the integral equations for contactless inductive flow tomography

Author:

Jacobs Ralf T.,Wondrak Thomas,Stefani Frank

Abstract

Purpose The contactless inductive flow tomography is a procedure that enables the reconstruction of the global three-dimensional flow structure of an electrically conducting fluid by measuring the flow-induced magnetic flux density outside the melt and by subsequently solving the associated linear inverse problem. The purpose of this study is to improve the accuracy of the computation of the forward problem, since the forward solution primarily determines the accuracy of the inversion. Design/methodology/approach The tomography procedure is described by a system of coupled integral equations where the integrals contain a singularity when a source point coincides with a field point. The integrals need to be evaluated to a high degree of precision to establish an accurate foundation for the inversion. The contribution of a singular point to the value of the surface and volume integrals in the system is determined by analysing the behaviour of the fields and integrals in the close proximity of the singularity. Findings A significant improvement of the accuracy is achieved by applying higher order elements and by attributing special attention to the singularities inherent in the integral equations. Originality/value The contribution of a singular point to the value of the surface integrals in the system is dependent upon the geometry of the boundary at the singular point. The computation of the integrals is described in detail and the improper surface and volume integrals are shown to exist. The treatment of the singularities represents a novelty in the contactless inductive flow tomography and is the focal point of this investigation.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Reference15 articles.

1. A gradiometric version of contactless inductive flow tomography: theory and first applications;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,2016

2. Velocity reconstruction in conducting fluids from magnetic field and electric potential measurements;Inverse Problems,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3