Torque and back-emf in hybrid excited claw pole generator

Author:

Wardach Marcin

Abstract

Purpose The paper aims to present the hybrid excited claw pole generator design, simulation and experimental results. The prototype has claw poles on two rotor sections, between which an excitation coil is located. The innovation of this machine is permanent magnets location on claws of one part of the rotor. The paper presents construction of the machine and analysis of the current in the excitation control coil influence on the electromagnetic torque, cogging torque and back-emf values. Presented studies enabled the determination of the torque and the back-emf for both: the strengthening and the weakening of magnetic field. Design/methodology/approach In the study, finite element analysis was used to perform simulation research. Then, based on the simulation studies, an experimental model was built. The paper also presents selected experimental results. Findings Achieved results show that the proposed machine topology allows to eliminate the disadvantages mentioned in paper, i.e. necessary to introduce special areas inside the machine to limit magnetic flux leakage or its complicated construction. Research limitations/implications The obtained cogging torque values and back-emf pulsation are still relatively high. In the near future, some of known techniques for reducing these pulsations can be applied, including the use of magnetic wedges, changing shapes of rotor’s poles and/or skewing of permanent magnets. Practical implications The proposed solution can be used in wind turbines as a generator. Originality/value The paper presents an original design of a new construction of a hybrid-excited claw pole machine and also an excitation current influence on cogging torque and back-emf values.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3