Approximation of the time-dependent induction equation with advection using Whitney elements
Author:
Nore Caroline,Zaidi Houda,Bouillault Frederic,Bossavit Alain,Guermond Jean-Luc
Abstract
Purpose
– The purpose of this paper is to present a new formulation for taking into account the convective term due to an imposed velocity field in the induction equation in a code based on Whitney elements called DOLMEN. Different Whitney forms are used to approximate the dependent variables. The authors study the kinematic dynamo action in a von Kármán configuration and obtain results in good agreement with those provided by another well validated code called SFEMaNS. DOLMEN is developed to investigate the dynamo action in non-axisymmetric domains like the impeller driven flow of the von Kármán Sodium (VKS) experiment. The authors show that a 3D magnetic field dominated by an axisymmetric vertical dipole can grow in a kinematic dynamo configuration using an analytical velocity field.
Design/methodology/approach
– Different Whitney forms are used to approximate the dependent variables. The vector potential is discretized using first-order edge elements of the first family. The velocity is approximated by using the first-order Raviart-Thomas elements. The time stepping is done by using the Crank-Nicolson scheme.
Findings
– The authors study the kinematic dynamo action in a von Kármán configuration and obtain results in good agreement with those provided by another well validated code called SFEMaNS. The authors show that a 3D magnetic field dominated by an axisymmetric vertical dipole can grow in a kinematic dynamo configuration using an analytical velocity field.
Originality/value
– The findings offer a basis to a scenario for the VKS dynamo.
Subject
Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications
Reference23 articles.
1. Allen, N.
,
Lai, H.
,
Rodger, D.
and
Leonard, P.
(1998), “On the validity of two A-Psi finite element formulations for modelling eddy current problems with velocity”,
IEEE Transactions on Magnetics
, Vol. 34 No. 5, pp. 2535-2538. 2. Boisson, J.
,
Aumaitre, S.
,
Bonnefoy, N.
,
Bourgoin, M.
,
Daviaud, F.
,
Dubrulle, B.
,
Odier, P.
,
Pinton, J.-F.
,
Plihon, N.
and
Verhille, G.
(2012), “Symmetry and couplings in stationary von Kármán sodium dynamos”,
New Journal of Physics
, Vol. 14 No. 1, pp. 1-18. 3. Bonito, A.
and
Guermond, J.-L.
(2011), “Approximation of the eigenvalue problem for the time harmonic Maxwell system by continuous Lagrange finite elements”,
Mathematics of Computation
, Vol. 80 No. 276, pp. 1887-1910. 4. Bonito, A.
,
Guermond, J.-L.
and
Luddens, F.
(2013), “Regularity of the Maxwell equations in heterogeneous media and Lipschitz domains”,
Journal of Mathematical Analysis and Applications
, Vol. 408 No. 2, pp. 498-512. 5. Bossavit, A.
(1985), “Two dual formulations of the 3D eddy-currents problem”,
COMPEL – The International Journal for Computation and Mathematics in Electrical and Electronic Engineering
, Vol. 4 No. 2, pp. 103-116.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|