A positive, negative and zero sequences electric power, to improve upon the standard IEEE 1459-2010

Author:

Bialobrzheskyi Oleksii V.,Rod'Kin Dmytro

Abstract

Purposes The purpose of this paper is to identify on the instantaneous electrical power basis of a nonsinusoidal periodic current three-phase asymmetric system, active and reactive positive, negative and zero sequence powers, taking into account higher harmonics. The main power theories, including those embodied in the IEEE 1459 standard, do not allow to evaluate some of power components. Design/methodology/approach A well-known fact is that the three-phase AC system total power with the symmetry of currents and voltages is constant. It corresponds to the electrical energy transfer process in a DC system. In this case, the electrical energy transmission can be taken as high quality. It has been established that the components of active and reactive powers are because of the product of current and voltage of unidirectional sequences. The orthogonal components of the oscillating power are because of the product of the voltage and current components of different sequences, with the exception of the zero sequence. Findings For an unbalanced nonsinusoidal mode of a three-phase system, the components of instantaneous power were defined, corresponding to the active and reactive positive and negative and zero sequences powers with the selection of the fundamental and higher harmonics. The active and reactive powers of sequences were divided into two categories – consumed and generated. Originality/value It is proposed to use the ratio of “interfere” power RMS value to the total power RMS value to assess the instantaneous power distortion.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Reference19 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Double Feed Inductor Generator Mathematical Model for Studying Generation Modes with Unbalance of Electrical Machine Parameters;2023 IEEE 5th International Conference on Modern Electrical and Energy System (MEES);2023-09-27

2. Double feed inductor generator mathematical model for studying generation modes with unbalance of electrical machine parameters;Reporter of the Priazovskyi State Technical University. Section: Technical sciences;2023-06-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3