Author:
Nierla Michael,Sutor Alexander,Rupitsch Stefan Johann,Kaltenbacher Manfred
Abstract
Purpose
This paper aims to present a novel stageless evaluation scheme for a vector Preisach model that exploits rotational operators for the description of vector hysteresis. It is meant to resolve the discretizational errors that arise during the application of the standard matrix-based implementation of Preisach-based models.
Design/methodology/approach
The newly developed evaluation uses a nested-list data structure. Together with an adapted form of the Everett function, it allows to represent both the additional rotational operator and the switching operator of the standard scalar Preisach model in a stageless fashion, i.e. without introducing discretization errors. Additionally, presented updating and simplification rules ensure the computational efficiency of the scheme.
Findings
A comparison between the stageless evaluation scheme and the commonly used matrix approach reveals not only an improvement in accuracy up to machine precision but, furthermore, a reduction of computational resources.
Research limitations/implications
The presented evaluation scheme is especially designed for a vector Preisach model, which is based on an additional rotational operator. A direct application to other vector Preisach models that do not rely on rotational operators is not intended. Nevertheless, the presented methodology allows an easy adaption to similar vector Preisach schemes that use modified setting rules for the rotational operator and/or the switching operator.
Originality/value
Prior to this contribution, the vector Preisach model based on rotational operators could only be evaluated using a matrix-based approach that works with discretized forms of rotational and switching operator. The presented evaluation scheme offers reduced computational cost at much higher accuracy. Therefore, it is of great interest for all users of the mentioned or similar vector Preisach models.
Subject
Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Computation of rotational hysteresis losses by vector Preisach models based on rotational operators;COMPEL - The international journal for computation and mathematics in electrical and electronic engineering;2022-02-01