Wideband performance limitations of the C-FDTD in the discretization impoverishment of a curved surface

Author:

Fortes Lucas Lobo Latorre,Gonçalves Sandro Trindade Mordente

Abstract

Purpose This paper aims to explore the limitations of the conformal finite difference time-domain method (C-FDTD or Dey–Mittra) when modeling perfect electric conducting (PEC) and lossless dielectric curved surfaces in coarse meshes. The C-FDTD is a widely known approach to reduce error of curved surfaces in the FDTD method. However, its performance limitations are not broadly described in the literature, which are explored as a novelty in this paper. Design/methodology/approach This paper explores the C-FDTD method applied on field scattering simulations of two curved surfaces, a dielectric and a PEC sphere, through the frequency range from 0.8 to 10 GHz. For each sphere, the mesh was progressively impoverished to evaluate the accuracy drop and performance limitations of the C-FDTD with the mesh impoverishment, along with the wideband frequency range described. Findings This paper shows and quantifies the C-FDTD method’s accuracy drops as the mesh is impoverished, reducing C-FDTD’s performance. It is also shown how the performance drops differently according to the frequency of interest. Practical implications With this study, coarse meshes, with smaller execution time and reduced memory usage, can be further explored reliably accounting the desired accuracy, enabling a better trade-off between accuracy and computational effort. Originality/value This paper quantifies the limitations of the C-FDTD in coarse meshes in a wideband manner, which brings a broader and newer insight upon C-FDTD’s limitations in coarse meshes or relatively small objects in electromagnetic simulation.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Reference15 articles.

1. Chapter 11: scattering,1989

2. A fast multigrid-based electromagnetic eigensolver for curved metal boundaries on the Yee mesh;Journal of Computational Physics,2013

3. A new efficient and stable 3D conformal FDTD;IEEE Microwave and Wireless Components Letters,2016

4. On-chip mm-wave spherical dielectric resonator bandpass filter,2017

5. Stability analysis and improvement of the conformal ADI-FDTD methods;IEEE Transactions on Antennas and Propagation,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3