Boundary element method for 3D conductive thin layer in eddy current problems

Author:

Issa Mohammad,Poirier Jean-René,Perrussel Ronan,Chadebec Olivier,Péron Victor

Abstract

Purpose Thin conducting sheets are used in many electric and electronic devices. Solving numerically the eddy current problems in presence of these thin conductive sheets requires a very fine mesh which leads to a large system of equations, and it becomes more problematic in case of higher frequencies. The purpose of this paper is to show the numerical pertinence of equivalent models for 3D eddy current problems with a conductive thin layer of small thickness e based on the replacement of the thin layer by its mid-surface with equivalent transmission conditions that satisfy the shielding purpose, and by using an efficient discretization using the boundary element method (BEM) to reduce the computational work. Design/methodology/approach These models are solved numerically using the BEM and some numerical experiments are performed to assess the accuracy of the proposed models. The results are validated by comparison with an analytical solution and a numerical solution by the commercial software Comsol. Findings The error between the equivalent models and analytical and numerical solutions confirms the theoretical approach. In addition to this accuracy, the computational work is reduced by considering a discretization method that requires only a surface mesh. Originality/value Based on a hybrid formulation, the authors present briefly a formal derivation of impedance transmission conditions for 3D thin layers in eddy current problems where non-conductive materials are considered in the interior and the exterior domain of the sheet. BEM is adopted to discretize the problem as there is no need for volume discretization.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Reference19 articles.

1. Buffa, A. and Fortin, M. (1999), “On traces for functional spaces related to Maxwell’s equations. Part I: an integration by parts formula in Lipschitz polyhedra”, Tech. Rep. 1147, Instituto di Analisi Numerica, CNR, Pavia.

2. Symmetric coupling for eddy current problems;SIAM Journal on Numerical Analysis,2002

3. Coupled boundary-element scheme for eddy-current computation;Journal of Engineering Mathematics,2005

4. A boundary integral method for eddy current flow around cracks in thin plates;IEEE Transactions on Magnetics,1982

5. Péron, V. (2017), “Impedance transmission conditions for eddy current problems”, available at: www.hal.inria.fr/hal-01505612

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3