Rotor pole and stator tooth shaping in FSPM machines for torque performance optimization

Author:

Cetin Emrah,Zhu Z.Q.

Abstract

Purpose This study aims to obtain the minimum torque ripple at the maximum average torque for Flux-switching permanent magnet (FSPM) machines. Design/methodology/approach This paper is about torque performance optimization of the FSPM machines. To achieve that, finite element analysis and genetic algorithm (GA) are used. Five different designs are simulated, optimized and compared on their air gap flux density, back electromotive force, cogging torque, average torque, torque density and torque ripple. Findings After the thousands of iterations, its proved that all proposed shaping techniques have potential for reducing torque ripple and cogging torque, with slightly reduced average torque. The best design is the joint stator and rotor shaping, Design V, which results in the lowest torque ripple and cogging torque. The techniques should be applicable to FSPMs with other stator slot/rotor pole number combinations. Originality/value In this paper, rotor pole shaping by notching, chamfering and generic shaping, stator tooth shaping and joint shaping techniques are investigated for 12 s/10p FSPM machines. Rotor and stator flanks are optimized separately and jointly, by using finite element analysis and GA for optimization to achieve maximum average torque and minimum torque ripple. Five different design is implemented and compared, respectively.

Publisher

Emerald

Reference25 articles.

1. Reducing cogging torque in flux switching motors with segmented rotor;IEEE Transactions on Magnetics,2013

2. Effective computational techniques of reducing cogging torque in permanent magnet flux switching machine;Journal of Applied and Emerging Sciences,2019

3. Stator tooth and rotor pole shaping for low pole flux switching permanent magnet machines to reduce even order harmonics in flux linkage,2016

4. Optimization of torque performance of FSPM machines by rotor pole shaping using FEA and genetic algorithm,2022

5. Comparison of all- and alternate-poles-wound flux-switching PM machines having different stator and rotor pole number;IEEE Transactions on Industry Applications,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3