Visualization of spatial conductivity irregularities within conductive rubber sheets

Author:

Wernick Helmut,Hoelzl Patrick,Zagar Bernhard G.

Abstract

Purpose – The purpose of this paper is to present a fast and contactless measurement method to determine the spatial conductivity distribution within an intrinsically conducting polymer, more precisely a conductive rubber sheet specimen. As a consequence of the manufacturing process and the material composition, the conductivity distribution within the sheet is assumed to be inhomogeneous. Design/methodology/approach – The current density distribution within the conductive rubber sheet due to an excitation current is estimated from the measured magnetic field distribution. Therefore, a GMR sensor is used to spatially sample the magnetic field above the specimen. Based on the estimated current density distribution and alternatively the local power dissipation calculated from a thermal image, the conductivity distribution within the specimen is determined. For comparison a reference measurement with a classical resistivity probe is done. Findings – The measurement results show a good agreement between the developed and the classical method. Moreover, the developed measurement method requires less time and still offers a higher spatial resolution. Originality/value – The presented results demonstrate the potential of the developed measurement method for determining the conductivity distribution within thin and planar specimens. Furthermore, conclusions can be drawn about the material homogeneity of the used test specimen.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3