Induction motors broken rotor bars detection using RPVM and neural network

Author:

Bensaoucha Saddam,Bessedik Sid Ahmed,Ameur Aissa,Teta Ali

Abstract

Purpose The purpose of this study aims to focus on the detection and identification of the broken rotor bars (BRBs) of a squirrel cage induction motor (SCIM). The presented diagnosis technique is based on artificial neural networks (NNs) that use as inputs the results of the spectral analysis using the fast Fourier transform (FFT) of the reduced Park’s vector modulus (RPVM), along with the load values in which the motor operates. Design/methodology/approach First, this paper presents a comparative study between FFT applied on Hilbert modulus, Park’s vector modulus and RPVM to extract feature frequencies of BRB faults. Moreover, the extracted features of FFT applied to RPVM and the load values were selected as NNs’ inputs for the detection of the number of BRBs. Findings The obtained simulation results using MATLAB (Matrix Laboratory) environment show the effectiveness and accuracy of the proposed NNs based approach. Originality/value The current paper presents a novel diagnostic method for BRBs’ fault detection in SCIM, based on the combination between the signal processing analysis (FFT of RPVM) and artificial intelligence (NNs).

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Reference26 articles.

1. Broken rotor bar fault diagnosis using fast Fourier transform applied to field-oriented control induction machine: simulation and experimental study;The International Journal of Advanced Manufacturing Technology,2017

2. Contribution à la commande de la machine asynchrone, utilisation de la logique floue, des réseaux de neurones et des algorithmes génétiques,1999

3. Adaptive neural fuzzy inference system for the detection of inter-turn insulation and bearing wear faults in induction motor;IEEE Transactions on Industrial Electronics,2007

4. What stator current processing-based technique to use for induction motor rotor faults diagnosis?;IEEE Transactions on Energy Conversion,2003

5. An effective neural approach for the automatic location of stator interturn faults in induction motor;IEEE Transactions on Industrial Electronics,2008

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Broken Rotor Bars Fault Detection in Induction Machine Using Machine Learning Algorithms;2022 19th International Multi-Conference on Systems, Signals & Devices (SSD);2022-05-06

2. Application of Hybrid Wavelet-SVM Algorithm to Detect Broken Rotor Bars in Induction Motors;2021 IEEE 30th International Symposium on Industrial Electronics (ISIE);2021-06-20

3. Detection of Inter Turn Short Circuit Faults in Induction Motor using Artificial Neural Network;2020 26th Conference of Open Innovations Association (FRUCT);2020-04

4. Induction motor broken rotor bar faults diagnosis using ANFIS-based DWT;International Journal of Modelling and Simulation;2019-12-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3