Real-time implementation of MRAS rotor time constant estimation for induction motor vector control based on a new adaptation signal

Author:

Omari Aymen,Ismail Khalil Bousserhane,Hazzab Abdeldjebar,Bouchiba Bousmaha,Benmohamed Fayssal ElYamani

Abstract

PurposeThe major disadvantage of the field-oriented control (FOC) scheme of induction motors is its dependency on motor parameter variations because of the temperature rise. Among the motor parameters, rotor resistance is a parameter that can degrade the robustness of FOC scheme. An inaccurate setting of the rotor resistance in the slip frequency may result in undesirable cross coupling and performance degradation. To overcome this disadvantage, the purpose of this paper is to propose a model reference adaptive system (MRAS) rotor time constant tuning to improve the induction motor drive performance and to compensate the flux orientation error in vector control law.Design/methodology/approachFirst, the dynamic model and the indirect field-oriented control of induction motor are derived. Then, an inverse rotor time constant tuning is proposed based on MRAS theory where a new adaptation signal formulation is used as reference model, and the estimated stator currents obtained from induction motors (IM) state space resolution is used in the adaptive model.FindingsThe effectiveness and robustness of IM speed control with the proposed MRAS inverse rotor time constant estimator is verified through MATrix LABoratory/Simulink model simulation and laboratory experimental results. The simulation and experimental results show good transient drive performances, satisfactory for rotor resistance estimation and robustness with regard to uncertainties and load torque disturbance.Originality/valueThis paper presents an online tuning of the inverse rotor time constant using a new adaptation signal MRAS model. The proposed estimator is proved to guarantee the stability for different operating conditions, especially in very low/zero speed region and heavy load torque. The stability analysis of the proposed estimation procedure is also demonstrated.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Reference17 articles.

1. Real-time implementation of bi input-extended Kalman filter-based estimator for speed-sensorless control of induction motors;IEEE Transactions on Industrial Electronics,2012

2. A novel adaptive control method for induction motor based on backstepping approach using dSpace DS 1104 control board;Mechanical Systems and Signal Processing,2018

3. A modified neural learning algorithm for online rotor resistance estimation in vector controlled induction motor drives;Frontiers in Energy,2015

4. Indirect vector control with simplified rotor resistance adaptation for induction machines;IET Power Electronics,2015

5. Online stator and rotor resistance estimation scheme using artificial neural networks for vector controlled speed sensorless induction motor drive;IEEE Transactions on Industrial Electronics,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3