Author:
Tadeusiewicz Michal,Halgas Stanislaw
Abstract
Purpose
The purpose of this paper is to develop a method for multiple soft fault diagnosis of nonlinear circuits including fault detection, identification of faulty elements and estimation of their values in real circumstances.
Design/methodology/approach
The method for fault diagnosis proposed here uses a measurement test leading to a system of nonlinear equations expressing the measured quantities in terms of the circuit parameters. Nonlinear functions, which appear in these equations are not given in explicit analytical form. The equations are solved using a homotopy concept. A key problem of the solvability of the equations is considered locally while tracing the solution path. Actual faults are selected on the basis of the observation that the probability of faults in fewer number of elements is greater than in a larger number of elements.
Findings
The results indicate that the method is an effective tool for testing nonlinear circuits including bipolar junction transistors and junction field effect transistors.
Originality/value
The homotopy method is generalized and associated with a restart procedure and a numerical algorithm for solving differential equations. Testable sets of elements are found using the singular value decomposition. The procedure for selecting faulty elements, based on the minimal fault number rule, is developed. The method comprises both theoretical and practical aspects of fault diagnosis.
Subject
Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献