A neural network identifier for electromagnetic thermotherapy systems

Author:

Tai Cheng-Chi,Wang Wei-Cheng,Hsu Yuan-Jui

Abstract

Purpose This study aims to establish a dynamic process model of an electromagnetic thermotherapy system (ETS) to predict the temperature of a thermotherapy needle. Design/methodology/approach The model is used for real-time predicting the static and dynamic responses of temperature and can therefore provide a valuable analysis for system monitoring. Findings The electromagnetic thermotherapy process is a nonlinear problem in which the system identification is implemented by a neural network identifier. It can simulate the input/output relationship of a real system with an excellent approximation ability to uncertain nonlinear system. A system identifier for an ETS is analyzed and selected with recurrent neural networks models to deal with various treatment processes. Originality/value The Elman neural network (ENN) prediction model on ETS proposed in this study is an easy and feasible method. Comparing two situations of inputs with more and fewer data, both are trained to present low mean squared error, and the temperature response error appears within 15 per cent. The ENN, with the advantages of simple design and stable efficacy, is useful for establishing the temperature prediction model to ensure the security in the thermotherapy.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Reference22 articles.

1. Dynamic properties of Elman and modified Elman neural network,2002

2. Finding structure in time;Cognitive Science,1990

3. Dual-row needle arrays under an electromagnetic thermotherapy system for bloodless liver resection surgery;IEEE Transactions on Biomedical Engineering,2012

4. Water bath temperature control by a recurrent fuzzy controller and its FPGA implementation;IEEE Transactions on Industrial Electronics,2006

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data driven NARMAX modeling for PEMFC air compressor;International Journal of Hydrogen Energy;2020-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3