Emissivity compensated infrared thermometry for planar materials

Author:

Osta Marta,Carretero Claudio,Blasco Pilar,Carretero Enrique,Alonso Rafael

Abstract

Purpose This paper aims to analyze the conical-shaped compensator applied to infrared (IR) thermometry for planar materials. Design/methodology/approach The compensator for the IR thermometry system has been analyzed by means of numerical simulations performed in a commercial finite element analysis tool. Afterwards, the characteristics of a final system have been proposed. The simulation results have been validated by means of experimental measurements performed in a prototype of the proposed system. Findings The proposed conical shape geometry of the compensator is suitable to reduce the errors associated with the temperature estimation by IR thermometry when emissivity of the material is not known with adequate accuracy. Practical implications This work proposed an arrangement of conical-shaped compensator to increase the precision in the IR radiation thermometry of planar materials. Originality/value In this paper, the conical shape geometry is proposed instead of the classical semi-spherical geometry for the compensator of an IR radiation thermometry system with the purpose of reducing the thickness of the complete system. This new proposal can be advantageous when geometrical constraints are imposed.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3