Performance assessment of class-E inverter for capacitive power transfer system

Author:

Yusop Yusmarnita,Md. Saat Mohd. Shakir,Husin Siti Huzaimah,Kiong Nguang Sing,Hindustan Imran

Abstract

Purpose This paper aims to present a new wireless power transfer technique using capacitive coupling. The capacitive power transfer (CPT) system has been introduced as an attractive alternative to the traditional inductive coupling method. The CPT offers benefits such as simple topology, fewer components, better electromagnetic interference (EMI) performance and robustness to surrounding metallic elements. Design/methodology/approach A class-E inverter together with and without inductor capacitor (LC) matching circuit has been utilised in this work because of its ability to perform the DC-to-AC inversion efficiently with significant reduction in switching losses. The validity of the proposed concept has been verified by conducting a laboratory experiment of the CPT system. Findings The performances for both systems are analysed and evaluated. A 9.7 W output power is generated through a combined interface [printed circuit board (PCB) plate] capacitance of 2.82 nF at an operating frequency of 1 MHz, with 97 per cent efficiency for 0.25 mm coupling gap distance. Originality value An efficient CPT system with class-E LC matching topology is proposed in this paper. With this topology, the zero-voltage switching can be achieved even if the load is different by properly designing the LC matching transformation circuit.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Reference26 articles.

1. Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems;IEEE Transactions on Industrial Electronics,2013

2. C-Motive Technologies Inc (2011), available at: http://www.c-motive.com/technologyproducts/

3. Wireless electric vehicle charging via capacitive power transfer through a conformal bumper,2015

4. Electromagnetic fields in body by wireless inductive system;COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering,2015

5. A dynamically adaptable impedance-matching system for midrange wireless power transfer with misalignment;Energies,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3