Design and testing of a magnetic suspension for a 90° horizontal bend conveyor

Author:

Fabbri Massimo,Ribani Pier Luigi,Zuffa Davide

Abstract

Purpose – A conveyor device is studied with the aim to reduce the friction between the inner surface of the beam and the chain. The lower is the friction between the chain and the beam, the lower is the surface wear. The magnetic repulsion force among permanent magnets (PMs) placed on the beam and on the chain is utilized to reduce friction. The paper aims to discuss these issues. Design/methodology/approach – The considered magnetic suspension is realized with PMs in repulsive configuration; it is designed by solving a constrained optimization problem, with reference to the geometry of the 90° horizontal bend FlexLink WL322 conveyor. Flux density field and its gradient are evaluated using volume integral equation method, allowing to calculate the forces acting on the chain and the stiffness of the magnetic suspension. Findings – The magnetic suspension prototype was manufactured and tested. The experimental and calculated values of the forces acting on the chain compares well. A stable horizontal equilibrium of the chain was obtained during both static and dynamical tests. Research limitations/implications – The quasi-static model used neglects the dynamical interactions among the elements of the chain, the PMs and loads weight during motions and the eddy current losses in the aluminium beam. However the dynamical tests on the prototype show that the chain motion is regular up to the nominal velocity all along the conveyor with the exception of the trailing edge of the 90° curve. Practical implications – The tests on the prototype show the possibility of a removal or at least a reduction of the friction force between the chain and the inner side of the beam by means of a passive magnetic suspension. As a consequence a reduction of noise and vibrations and an increase of the mean-time-to-failure is expected. Originality/value – Prototype testing shows that the unavoidable vertical instability of the magnetic forces has no practical consequence since, reducing the allowed vertical gap, the chain is stabilized by the gravitational force.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3