Author:
Zeng Zhiyong,Jin Xiaoliang,Zhao Rongxiang
Abstract
Purpose
The model for digitally controlled three-phase pulse width modulation (PWM) boost rectifiers is a sampled data model, which is different from the continuous time domain models presented in previous studies. The controller, which is tuned according to the model in continuous time domain and discretized by approximation methods, may exhibit some unpredictable performances and even result in unstable systems under some extreme situations. Consequently, a small-signal discrete-time model of digitally controlled three-phase PWM boost rectifier is required. The purpose of this paper is to provide a simple but accurate small-signal discrete-time model of digital controlled three-phase PWM boost rectifier, which explains the effect of the sampling period, modulator and time delays on system dynamic and improves the control performance.
Design/methodology/approach
Based on the Laplace domain analysis and the waveforms of up-down-count modulator, the small signal model of digital pulse width modulation (DPWM) in the Laplace domain is presented. With a combination of state-space average and a discrete-time modeling technique, a simplified large signal discrete time model is developed. With rotation transformation and feed-forward decoupling, the large-signal model is decoupled into a single input single output system with rotation transformation. Then, an integrated small signal model in the Laplace domain is constructed that included the time delay and modulation effect. Implementing the modified z-transform, a small-signal discrete-time model is derived from the integrated small signal model.
Findings
In a digital control system, besides the circuit parameters, the location of pole of open-loop transfer function is also related to system sampling time, affecting the system stability, and the time delay determines the location of the zero of open-loop transfer function, affecting the system dynamic. In addition to the circuit parameters discussed in previous literature, the right half plane (RHP) zero is also determined by the sampling period and the time delay. Furthermore, the corner frequency of the RHP zero is mainly determined by the sampling period.
Originality/value
The model developed in this paper, accounting for the effect of the sampling period, modulator and time delays on the system dynamic, give a sufficient insight into the behavior of the digitally controlled three-phase PWM rectifier. It can also explain the effect of sampling period and control delay time on system dynamic, accurately predict the system stability boundary and determine the oscillation frequency of the current loop in critical stable. The experimental results verify that the model is a simple and accurate control-oriented small-signal discrete-time model for the digitally controlled three-phase PWM boost rectifier.
Subject
Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications
Reference24 articles.
1. Design considerations and predictive direct current control of active regenerative rectifiers for harmonic and current ripple reduction,2016
2. A new mathematical model and control of a three-phase AC-DC voltage source converter;IEEE Transactions on Power Electronics,1997
3. Digital control of power converters – a survey;IEEE Transactions on Industrial Informatics,2012
4. A fuzzy-controlled active front-end rectifier with current harmonic filtering characteristics and minimum sensing variables;IEEE Transactions on Power Electronics,1999
5. Small-signal modeling and control of three-phase PWM converters,1994