Influence of design parameters on inductances of e-core axial field flux-switching permanent magnet machines

Author:

Wei Zhang,Ming Yao Lin

Abstract

Purpose – Axial field flux-switching permanent magnet machine (AFFSPMM) can be applied in the field of electric and hybrid electric vehicles because of short axial size, large torque density, and high-power density. The purpose of this paper is to improve the reliability of AFFSPMM itself, the design parameters have to be considered for attaining high self-inductances and reduced mutual-inductances. Design/methodology/approach – The original parameters of E-core AFFSPMM are designed with reference to a 600 W prototype, on the basis of which the 3-D model of the original AFFSPMM is established, and the inductances are calculated by finite element method. The influence of these parameters on the inductances, including combinations of stator and rotor pole numbers, spilt ratio, stator side tooth width, magnet thickness, and rotor pole width etc., are respectively investigated and analyzed under the constant copper loss. Findings – The relationships of rotor pole numbers and inductances are deduced on the condition of the fixed stator poles. It is found that the rotor pole numbers has significant effects on the ratio of mutual-inductance to self-inductance, and the self-inductance is mainly affected by the rotor pole numbers, the split ratio, the stator tooth width, and the rotor pole width. The asymmetry of back-EMF can be largely reduced by optimizing the rotor tooth width. In this paper, the static characteristics are compared and analyzed for the original and optimal 6/14-pole AFFSPMM. Meanwhile, the open-circuit and short-circuit fault are investigated by transient analysis. The results show that the optimized E-core AFFSPMM has good fault tolerance. Originality/value – The research of inductance characteristics for E-core AFFSPMM is valuable to design the fault-tolerant machine, by which the cost of control and manufacture can be largely saved.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3