Identification of Duhem-type piezoelectric hysteresis using a modified bee colony algorithm

Author:

Chen Qun,Yang Zong-Xiao

Abstract

Purpose The determination of parameters of Duhem model that can describe piezoelectric hysteresis is usually a great challenge. The purpose of this paper is to find a way to identify the parameters of Duhem model by using a modified bee colony algorithm. Design/methodology/approach The promising bee colony algorithm has great potential to identify hysteresis nonlinearity, but has not yet been used to identify the Duhem-type hysteresis in the literatures. To explore this possibility, the classical bee colony algorithm is modified to enhance its performance regarding both searching capability and convergence speed. In the modification, the current optimal solution is used to guide the search direction, which can balance the local and global searching ability. Moreover, a new searching formula for scout bees is proposed to enhance the convergence ability of the algorithm. Findings Through a series of experiments, the modified algorithm can attain the optimal parameters with a 0.61 µm peak valley error and a 0.12 µm root-mean-square error. Compared to the particle swarm optimization and classical bee colony algorithms, the modified bee colony algorithm can reach higher parameter identification accuracy. Based on 50 trials, the robustness of the posed algorithm was also proved. Originality/value The well-performed modified bee colony algorithm is a good candidate in parameter identification of Duhem-type hysteresis nonlinear systems. As there is no work studying the parameter identification of Duhem model using a bee colony algorithm in the literatures, this work closed this gap and explored the ability of bee colony algorithm to identify piezoelectric hysteresis with superb accuracy and robustness.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Reference28 articles.

1. Traite elementaire de mecanique chimique, fondee sur la thermo dynamique;Science,1897

2. Hysteresis parameters estimation using a modified harmony search;COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering,2013

3. Design, fabrication and testing of a 2 DOF compliant flexural microgripper;Microsystem Technologies,2018

4. A modified artificial bee colony algorithm;Computers and Operations Research,2012

5. A survey of the hysteretic duhem model;Archives of Computational Methods in Engineering,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3