Sensitivity model based PID controller for various high-order processes

Author:

Ghosh Sreya,Pan Somnath

Abstract

Purpose This paper aims to propose a reference model based simple strategy for the design of proportional-integral-derivative (PID) controller using frequency response matching for high-order stable, integrating and unstable processes that may have time-delay and non-minimum phase zero. Design/methodology/approach The reference sensitivity model is designed fulfilling stability conditions of the control system responses such as set-point response, load-disturbance response and noise response along with transient response criteria. The analytical controller thus designed is approximated to a PID controller using a simple formula based on a model-matching technique at low frequency. Findings PID controllers are designed for examples with varied dynamics taken from the literature, and the performances of the designed control systems are compared with some methods prevalent in the literature to show the efficacy of the proposed work. Overall, the method gives satisfactory set-point, as well as load-disturbance responses and controller-outputs in all the cases considered. Originality/value The method is applicable to high-order processes of various monotonic or oscillating dynamics without requiring process reduction. The PID controller designed considering a reference model with suitable criteria ensuring stability and a modified model matching technique, which provides a stable control system for all these high-order processes.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cascade controllers design based on model matching in frequency domain for stable and integrating processes with time delay;COMPEL - The international journal for computation and mathematics in electrical and electronic engineering;2022-01-17

2. Enhanced control of unstable cascade systems using direct synthesis approach;Chemical Engineering Science;2021-03

3. Performance assessment of controller designed for electrical systems with second order dynamics;COMPEL - The international journal for computation and mathematics in electrical and electronic engineering;2020-09-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3