Steady-state analysis of DC converter using Galerkin’s method

Author:

Korotyeyev Igor

Abstract

Purpose The purpose of this paper is to present the Galerkin method for analysis of steady-state processes in periodically time-varying circuits. Design/methodology/approach A converter circuit working on a time-varying load is often controlled by different signals. In the case of incommensurable frequencies, one can find a steady-state process only via calculation of a transient process. As the obtained results will not be periodical, one must repeat this procedure to calculate the steady-state process on a different time interval. The proposed methodology is based on the expansion of ordinary differential equations with one time variable into a domain of two independent variables of time. In this case, the steady-state process will be periodical. This process is calculated by the use of the Galerkin method with bases and weight functions in the form of the double Fourier series. Findings Expansion of differential equations and use of the Galerkin method enable discovery of the steady-state processes in converter circuits. Steady-state processes in the circuits of buck and boost converters are calculated and results are compared with numerical and generalized state-space averaging methods. Originality/value The Galerkin method is used to find a steady-state process in a converter circuit with a time-varying load. Processes in such a load depend on two incommensurable signals. The state-space averaging method is generalized for extended differential equations. A balance of active power for extended equations is shown.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Reference15 articles.

1. Steady state transmission through networks containing periodically operated switches;IRE Transactions on Circuit Theory,1955

2. Numerical steady state analysis of electronic circuits driven by multi-tone signals;Electrical Engineering,1996

3. An efficient numerical method to solve the Falkner-Skan problem over an isothermal moving wedge;International Journal of Numerical Methods for Heat and Fluid Flow,2018

4. A network containing a periodically operated switch solved by successive approximations;Bell System Technical Journal,1957

5. On the part of the motion of the lunar perigel which is a function of the mean motions of the sun and the moon;Acta Mathematica,1886

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Steady-State Process Analysis of DC Converter Based on Equations Expansion;Microsystems, Electronics and Acoustics;2020-08-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3