Author:
Nosrati Amin,Nazarzadeh Jalal
Abstract
Purpose
The purpose of this paper is to introduce an asymmetric structure of the magnetic equivalent circuit (MEC) for analysis of the linear induction machine (LIM) with an internal short circuit fault.
Design/methodology/approach
By applying a proper MEC to the LIM, a generalized relation for the inductance matrix of the machine can be directly determined. To evaluate the proposed model, the stator currents and the air-gap flux with the proposed technique are given and compared to the simulation and experimental results in the healthy and fault conditions.
Findings
The LIM is an axial flux machine with a wide range of applications in high-performance drives. Due to a well-tried effect of the first tooth and the last one (the end effect), the performance level of the LIM decreases. Also, the analysis of the linear machines in fault conditions illustrates more complexity compared to the rotary induction machine. However, the MEC is very simple, describing the behavior of the asymmetric electromechanical devices using the magnetic reluctance or the permeance of flux paths.
Originality/value
Using the proposed model, there would be some decrease in the complications of the LIM analysis in the asymmetrical conditions. Moreover, analyzing some of the characteristics of the LIM, such as turn-fault condition, it can be calculated with high accuracy.
Subject
Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献