Stability control of permanent magnet and electromagnetic hybrid Halbach array electrodynamic suspension system

Author:

Luo Cheng,Zhang Kunlun,Liang Da,Jing Yongzhi

Abstract

Purpose The purpose of the paper is to study the stability control of permanent magnet (PM) and electromagnetic hybrid Halbach array electrodynamic suspension (EDS) system because of the poor suspension stability caused by the well-known under-damped nature of PM EDS system. The adjustment control is realized by PM and electromagnetic hybrid Halbach array, which is composed by winding active normal conductor coils on PM surface. Design/methodology/approach The three-dimensional (3-D) electromagnetic force analytical expression of PM and electromagnetic hybrid Halbach array EDS system for a nonmagnetic conductive plate is derived. And the accuracy of the derived equations is verified by a 3-D finite-element model (FEM). Basing on the 3-D levitation force expression, an acceleration feedback suspension controller is designed to suppress the vibration of PM EDS system, and the suspension stability of the system under the track and load disturbance was simulated and analyzed. Findings The 3-D electromagnetic force comparison of analytical model and FEM are in good agreement, which verifies the correctness of the analytical expression. The simulation results show that the acceleration feedback suspension controller can make the system have good suspension stability under the external disturbance. So it proved that the PM and electromagnetic hybrid Halbach array EDS system can overcome the poor suspension stability caused by the under-damped nature of PM EDS system through the designed acceleration feedback suspension controller. Originality/value This paper designed an acceleration feedback suspension controller to suppress the vibration of PM and electromagnetic hybrid Halbach array EDS system under external disturbance, basing on the derived levitation force analytical expression. And the simulation results show that the acceleration feedback suspension controller can make the system have good suspension stability under the external disturbance.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Reference28 articles.

1. A 3-D magnetic charge finite-element model of an electrodynamic wheel;IEEE Transactions on Magnetics,2008

2. Calculating the forces created by an electrodynamic wheel using a 2-D steady-state finite-element method;IEEE Transactions on Magnetics,2008

3. Dynamic stability of repulsive-force maglev suspension systems,1996

4. On the unsteady-motion theory of magnetic forces for maglev,1996

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3