GPU-accelerated body-internal electric field exposure simulation using low-frequency magnetic field sampling points

Author:

Haussmann Norman,Stroka Steven,Schmuelling Benedikt,Clemens Markus

Abstract

Purpose High resolution simulations of body-internal electric field strengths induced by magneto-quasistatic fields from wireless power transfer systems are computationally expensive. The exposure simulation can be split into two separate simulation steps allowing the calculation of the magnetic flux density distribution, which serves as input into the second simulation step to calculate the body-internal electric fields. In this work, the magnetic flux density is interpolated from in situ measurements in combination with the scalar-potential finite difference scheme to calculate the resulting body-internal field. These calculations are supposed to take less than 5 s to achieve a near real-time visualization of these fields on mobile devices. The purpose of this work is to present an implementation of the simulation on graphics processing units (GPUs), allowing for the calculation of the body-internal field strength in about 3 s. Design/methodology/approach This work uses the co-simulation scalar-potential finite difference scheme to determine the body-internal electric field strength of human models with a voxel resolution of 2 × 2 × 2 mm3. The scheme is implemented on GPUs. This simulation scheme requires the magnetic flux density distribution as input, determined from radial basis functions. Findings Using NVIDIA A100 GPUs, the body-internal electric field strength with high-resolution models and 8.9 million degrees of freedom can be determined in about 2.3 s. Originality/value This paper describes in detail the used scheme and its implementation to make use of the computational performance of modern GPUs.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Reference24 articles.

1. Magnetostatic field computations in terms of two-component vector potentials;International Journal for Numerical Methods in Engineering,1990

2. Radial basis functions;Acta Numerica,2000

3. Exposure assessment of a 20-kW wireless power transfer system for electric vehicles;International Journal of Automotive Technology,2020

4. The virtual family – development of surface-based anatomical models of two adults and two children for dosimetric simulations;Physics in Medicine and Biology,2009

5. Electromagnetic compatibility evaluation of wireless charging systems for public spaces,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3