New identification of induction machine parameters with a meta-heuristic algorithm based on least squares method

Author:

Zorig Anwar,Belkheiri Ahmed,Bendjedia Bachir,Kouzi Katia,Belkheiri Mohammed

Abstract

Purpose The great value of offline identification of machine parameters is when the machine manufacturer does not provide its parameters. Most machine control strategies require parameter values, and some circumstances in the industrial sector only require offline identification. This paper aims to present a new offline method for estimating induction motor parameters based on least squares and a salp swarm algorithm (SSA). Design/methodology/approach The central concept is to use the classic least squares (LS) method to acquire the majority of induction machine (IM) constant parameters, followed by the SSA method to obtain all parameters and minimize errors. Findings The obtained results showed that the LS method gives good results in simulation based on the assumption that the measurements are noise-free. However, unlike in simulations, the LS method is unable to accurately identify the machine’s parameters during the experimental test. On the contrary, the SSA method proves higher efficiency and more precision for IM parameter estimation in both simulations and experimental tests. Originality/value After performing a primary identification using the technique of least squares, the initial intention of this study was to apply the SSA for the purpose of identifying all of the machine’s parameters and minimizing errors. These two approaches use the same measurement from a simple running test of an IM, and they offer a quick processing time. Therefore, this combined offline strategy provides a reliable model based on the identified parameters.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Reference24 articles.

1. Salp swarm algorithm: a comprehensive survey;Neural Computing and Applications,2020

2. A high precision method for induction machine parameters estimation from manufacturer data;IEEE Transactions on Energy Conversion,2020

3. Chiasson, J. (2005), Modeling and High-Performance Control of Electric Machines: Chiasson/Modeling, John Wiley and Sons, Hoboken, NJ, doi: 10.1002/0471722359.

4. Induction motor parameter estimation using sparse grid optimization algorithm;IEEE Transactions on Industrial Informatics,2016

5. Extracting optimal parameters of PEM fuel cells using salp swarm optimizer;Renewable Energy,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3