Author:
Rayyam Marouane,Zazi Malika,Barradi Youssef
Abstract
PurposeTo improve sensorless control of induction motor using Kalman filtering family, this paper aims to introduce a new metaheuristic optimizer algorithm for online rotor speed and flux estimation.Design/methodology/approachThe main problem with unscented Kalman filter (UKF) observer is its sensibility to the initial values of Q and R. To solve the optimal solution of these matrices, a novel alternative called ant lion optimization (ALO)-UKF is introduced. It is based on the combination of the classical UKF observer and a nature-inspired metaheuristic algorithm, ALO.FindingsSynthesized ALO-UKF has given good results over the famous extended Kalman filter and the classical UKF observer in terms of accuracy and dynamic performance. A comparison between ALO and particle swarm optimization (PSO) was established. Simulations illustrate that ALO recovers rapidly and accurately while PSO has a slower convergence.Originality/valueUsing the proposed approach, tuning the design matrices Q and R in Kalman filtering becomes an easy task with a high degree of accuracy and the constraints of time cost are surmounted. Also, ALO-UKF is an efficient tool to improve estimation performance of states and parameters’ uncertainties of the induction motor. Related optimization technique can be extended to faults monitoring by online identification of their corresponding signatures.
Subject
Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献