3D interactive garment parametric pattern-making and linkage editing based on constrained contour lines

Author:

Bao Chen,Miao YongweiORCID,Gu Bingfei,Liu Kaixuan,Liu Zhen

Abstract

PurposeThe purpose of this paper is to propose an interactive 2D–3D garment parametric pattern-making and linkage editing scheme that integrates clothing design, simulation and interaction to design 3D garments and 2D patterns. The proposed scheme has the potential to satisfy the individual needs of fashion industry, such as precise fit evaluation of the garment, interactive style editing with ease allowance and constrained contour lines in fashion design.Design/methodology/approachThe authors first construct a parametric pattern-making model for flat pattern design corresponding to the body dimensions. Then, the designing 2D patterns are stitched on a virtual 3D mannequin by performing a virtual try-on. If the customer is unsatisfied after the virtual try-on, the adjustable parameters (appearance parameters and fit parameters) can be adjusted using the 2D–3D linkage editing with hierarchical constrained contour lines, and the fit evaluation tool interactively provides the feedback.FindingsThe authors observed that the usability and efficiency of the existing garment pattern-making method simplifies the garment pattern-making process. The authors utilize an interactive garment parametric flat pattern-making model to generate an individualized garment flat pattern that effectively adjust and realize the local editing of the garment pattern-making. The 2D–3D linkage editing is then employed, which alters the size and shape of garment pattern for a precise human model fit of the 3D garment using hierarchical constrained contour lines. Various instances have validated the effectiveness of the proposed scheme, which can increase the reusability of the existing garment styles and improve the efficiency of fashion design.Research limitations/implicationsFirst, the authors do not consider the garment pattern-making design of sophisticated styles. Second, the authors do not directly consider complex garment shapes such as wrinkles, folds, multi-layer models and fabric physical properties.Originality/valueThe authors propose a pattern adjustment scheme that uses the 3D virtual try-on technology to avoid repetitions of reality-based fit tests and garment sample making in the designing process of clothing products. The proposed scheme provides interactive selections of garment patterns and sizes and renders modification tools for 3D garment designing and 2D garment pattern-making. The authors present the 2D–3D interactive linkage editing scheme for a custom-fit garment pattern based on the hierarchical constraint contour lines. The spatial relationship among the human body, pattern pieces and 3D garment model is adequately expressed, and the final design result of the garment pattern is obtained by constraint solving. Meanwhile, the tightness tension of different parts of the 3D garment is analyzed, and the fit and comfort of the garment are quantitatively evaluated.

Publisher

Emerald

Subject

Polymers and Plastics,General Business, Management and Accounting,Materials Science (miscellaneous),Business, Management and Accounting (miscellaneous)

Reference32 articles.

1. Physics-driven pattern adjustment for direct 3D garment editing;ACM Transactions on Graphics,2016

2. Parsing sewing patterns into 3D garments;ACM Transaction on Graphics,2013

3. A method for registration of 3-d shapes;IEEE Transactions on Pattern Analysis and Machine Intelligence,1992

4. Curve structure extraction for cartoon images,2009

5. Del (2011), “Delfem”, available at: https://code.google.com/archive/delfem (accessed 5 September 2020).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3