Technological learning modelling towards sustainable energy planning

Author:

Neshat Najmeh,Hadian Hengameh,Rahimi Alangi Somayeh

Abstract

PurposeObviously, the development of a robust optimization framework is the main step in energy and climate policy. In other words, the challenge of energy policy assessment requires the application of approaches which recognize the complexity of energy systems in relation to technological, social, economic and environmental aspects. This paper aims to develop a two-sided multi-agent based modelling framework which endogenizes the technological learning mechanism to determine the optimal generation plan. In this framework, the supplier agents try to maximize their income while complying with operational, technical and market penetration rates constraints. A case study is used to illustrate the application of the proposed planning approach. The results showed that considering the endogenous technology cost reduction moves optimal investment timings to earlier planning years and influences the competitiveness of technologies. The proposed integrated approach provides not only an economical generation expansion plan but also a cleaner one compared to the traditional approach.Design/methodology/approachTo the best of the authors’ knowledge, so far there has not been any agent-based generation expansion planning (GEP) incorporating technology learning mechanism into the modelling framework. The main contribution of this paper is to introduce a multi-agent based modelling for long-term GEP and undertakes to show how incorporating technological learning issues in supply agents behaviour modelling influence on renewable technology share in the optimal mix of technologies. A case study of the electric power system of Iran is used to illustrate the usefulness of the proposed planning approach and also to demonstrate its efficiency.FindingsAs seen, the share of the renewable technology agents (geothermal, hydropower, wind, solar, biomass and photovoltaic) in expanding generation increases from 10.2% in the traditional model to 13.5% in the proposed model over the planning horizon. Also, to incorporate technological learning in the supply agent behaviour leads to earlier involving of renewable technologies in the optimal plan. This increased share of the renewable technology agents is reasonable due to their decreasing investment cost and capability of cooperation in network reserve supply which leads to a high utilization factor.Originality/valueTo the best of the authors’ knowledge, so far there hasn’t been any agent-based GEP paying attention to this integrated approach. The main contribution of this paper is to introduce a multi-agent based modelling for long-term GEP and undertakes to show how incorporating technological learning issues in supply agents behaviour modelling influence on renewable technology share in the optimal mix of technologies. A case study of the electric power system of Iran is used to illustrate the usefulness of the proposed planning approach and also to demonstrate its efficiency.

Publisher

Emerald

Subject

General Engineering

Reference53 articles.

1. Assessment of wind energy in Iran: a review;Renewable and Sustainable Energy Reviews,2012

2. Optimal energy system for single household in Nigeria;International Journal of Energy Optimization and Engineering (Engineering),2013

3. An adaptive neural network-fuzzy linear regression approach for improved car ownership estimation and forecasting in complex and uncertain environments: the case of Iran;Transportation Planning and Technology,2012

4. Incorporating different endogenous learning formulations in MERGE;International Journal of Global Energy Issues,2003

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3