A hybrid machine learning approach for early cost estimation of pile foundations

Author:

Deepa G.,Niranjana A.J.,Balu A.S.

Abstract

Purpose This study aims at proposing a hybrid model for early cost prediction of a construction project. Early cost prediction for a construction project is the basic approach to procure a project within a predefined budget. However, most of the projects routinely face the impact of cost overruns. Furthermore, conventional and manual cost computing techniques are hectic, time-consuming and error-prone. To deal with such challenges, soft computing techniques such as artificial neural networks (ANNs), fuzzy logic and genetic algorithms are applied in construction management. Each technique has its own constraints not only in terms of efficiency but also in terms of feasibility, practicability, reliability and environmental impacts. However, appropriate combination of the techniques improves the model owing to their inherent nature. Design/methodology/approach This paper proposes a hybrid model by combining machine learning (ML) techniques with ANN to accurately predict the cost of pile foundations. The parameters contributing toward the cost of pile foundations were collected from five different projects in India. Out of 180 collected data entries, 176 entries were finally used after data cleaning. About 70% of the final data were used for building the model and the remaining 30% were used for validation. Findings The proposed model is capable of predicting the pile foundation costs with an accuracy of 97.42%. Originality/value Although various cost estimation techniques are available, appropriate use and combination of various ML techniques aid in improving the prediction accuracy. The proposed model will be a value addition to cost estimation of pile foundations.

Publisher

Emerald

Subject

General Engineering,Building and Construction

Reference37 articles.

1. Dealing with construction cost overruns using data mining;Construction Management and Economics,2014

2. Deep learning in the construction industry: a review of present status and future innovations;Journal of Building Engineering,2020

3. Analysis of factors influencing project cost estimating practice;Construction Management and Economics,2000

4. Construction project control using artificial neural networks;Artificial Intelligence for Engineering Design, Analysis and Manufacturing,1997

5. Early stage cost estimation of buildings construction projects using artificial neural networks;Journal of Artificial Intelligence,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3