Bitmap generation from computer-aided design for potential layer-quality evaluation in electron beam additive manufacturing

Author:

Wong Hay

Abstract

Purpose Electron beam additive manufacturing (EBAM) is a popular additive manufacturing (AM) technique used by many industrial sectors. In EBAM process monitoring, data analysis is focused on information extraction directly from the raw data collected in-process, i.e. thermal/optical/electronic images, and the comparison between the collected data and the computed tomography/microscopy images generated after the EBAM process. This paper aims to postulate that a stack of bitmaps could be generated from the computer-aided design (CAD) at a range of Z heights and user-defined region of interest during file preparation of the EBAM process, and serve as a reference image set. Design/methodology/approach Comparison between that and the workpiece images collected during the EBAM process could then be used for quality assessment purposes. In spite of the extensive literature on CAD slicing and contour generation for AM process preparation, the method of bitmap generation from the CAD model at different field of views (FOVs) has not been disseminated in detail. This article presents a piece of custom CAD-bitmap generation software and an experiment demonstrating the application of the software alongside an electronic imaging system prototype. Findings Results show that the software is capable of generating binary bitmaps with user-defined Z heights, image dimensions and image FOVs from the CAD model; and can generate reference bitmaps to work with workpiece electronic images for potential pixel-to-pixel image comparison. Originality/value It is envisaged that this CAD-bitmap image generation ability opens up new opportunities in quality assessment for the in-process monitoring of the EBAM process.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3