Evaluation of the printing strategies design on the mechanical and tribological response of acrylonitrile styrene acrylate (ASA) additive manufacturing parts

Author:

Vázquez Martínez Juan Manuel,Piñero Vega David,Salguero Jorge,Batista Moises

Abstract

Purpose The evaluation of novel materials such as the acrylonitrile styrene acrylate (ASA) for tribological and mechanical conditions can provide a structural protection against the environmental and wear effects that results in the long-term integrity of the 3 D printed parts. Results of the experimental stage are intended to identify the influence of the printing conditions on the functional characteristics of ASA parts that results in variations of the friction coefficient, wear rate and tensile response. In addition, this study aims to highlight the relevance of printing parameters to avoid the use of chemical post-processing stages, increasing the performance and sustainability of the process. Design/methodology/approach In this research, an evaluation of the influence of printing parameters of layer thickness and temperature on the mechanical and tribological response have been carried out for ASA specimens manufactured by fused filament fabrication technology. For this purpose, a range of three different values of thickness of fused layer and three different printing temperatures were combined in the manufacturing process of tests samples. Mechanical behavior of the printed parts was evaluated by standard tensile tests, and friction forces were measured by pin-on-disk tribological tests against steel spheres. Findings Higher layer thickness of the printed parts shows lower resistance to tribological wear effects; in terms of friction coefficient and wear rate, this type of parts also presents lower tensile strength. It has been detected that mechanical and tribological behavior is highly related to the micro-geometrical characteristics of the printed surfaces, which can be controlled by the manufacturing parameters. Under this consideration, a reduction in the coefficient of friction near to 65% in the average value was obtained through the variation of the layer thickness of printed surfaces. Originality/value This research aims to fill a gap in the scientific literature about the use of specific additive manufacturing materials under dynamic contact. This paper is mainly focused on the influence of the manufacturing parameters on the tribological and mechanical behavior of a weather resistant polymer (ASA).

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference34 articles.

1. Development of Weather-Resistant 3D printed structures by multi-material additive manufacturing;Journal of Composites Science,2020

2. Comparative study of the tribological behaviour of 3D-printed and moulded ABS under lubricated condition;Materials Research Express,2019

3. Mechanical properties of 3D printed composites with ABS/ASA substrate and glass fiber inserts;MATEC Web of Conferences Conferences,2019

4. Effect of layer thickness on surface properties of 3D printed materialsproduced from woodflour/PLA filament;Polymer Testing,2018

5. Effect of surface texturing on friction behavior of 3D printed polylactic acid (PLA);Polymer Testing,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3