Author:
Gaur Bhanupratap,Sagar Samrat,Suryawanshi Chetana M.,Tikekar Nishant,Ghyar Rupesh,Bhallamudi Ravi
Abstract
Purpose
Ti6Al4V alloy patient-customized implants (PCI) are often fabricated using laser powder bed fusion (LPBF) and annealed to enhance the microstructural, physical and mechanical properties. This study aims to demonstrate the effects of annealing on the physio-mechanical properties to select optimal process parameters.
Design/methodology/approach
Test samples were fabricated using the Taguchi L9 approach by varying parameters such as laser power (LP), laser velocity (LV) and hatch distance (HD) to three levels. Physical and mechanical test results were used to optimize the parameters for fabricating as-built and annealed implants separately using Grey relational analysis. An optimized parameter set was used for fabricating biological test samples, followed by animal testing to validate the qualified parameters.
Findings
Two optimized sets of process parameters (LP = 100 W, LV = 500 mm/s and HD = 0.08 mm; and LP = 300 W, LV = 1,350 mm/s and HD = 0.08 mm) are suggested suitable for implant fabrication regardless of the inclusion of annealing in the manufacturing process. The absence of any necrosis or reaction on the local tissues after nine weeks validated the suitability of the parameter set for implants.
Practical implications
To help PCI manufacturers in parameter selection and to exclude annealing from the manufacturing process for faster implant delivery.
Originality/value
To the best of the authors’ knowledge, this is probably a first attempt that suggests LPBF parameters that are independent of inclusion of annealing in implant fabrication process.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Optimization of laser-texturing process parameters of Ti6Al4V alloys using metaheuristic algorithms;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2024-03-22