Material extrusion additive manufacturing of 17–4 PH stainless steel: effect of process parameters on mechanical properties

Author:

Basak Animesh,Lee A.,Pramanik Alokesh,Neubauer Ken,Prakash Chander,Shankar S.

Abstract

Purpose Regardless of the materials used, additive manufacturing (AM) is one of the most popular emerging fabrication processes used for creating complex and intricate structural components. This study aims to investigate the effects of process parameters – namely, nozzle diameter, layer thickness and infill density on microstructure as well as the mechanical properties of 17–4 PH stainless steel specimens fabricated via material extrusion AM. Design/methodology/approach The experimental approach investigates the effects of printing parameters, including nozzle diameter, layer thickness and infill density, on surface roughness, physical and mechanical properties of the printed specimens. The tests were triplicated to ensure reproducibility of the experimental results. Findings The highest ultimate tensile strength, 795.26 MPa, was obtained on specimen that was fabricated with a 0.4 mm nozzle diameter, 0.14 mm layer thickness and 30% infill density. Furthermore, a 0.4 mm nozzle diameter also provided slightly better ductility. This came at the expense of surface finishing, as a 0.25 mm nozzle diameter exhibited better surface finishing over a 0.4 mm nozzle diameter. Infill density was shown to slightly influence the tensile properties, whereas layer thickness showed a significant effect on surface roughness. By contrast, hardness and ductility were independent of nozzle diameter, layer thickness and infill density. Originality/value This paper presents a comprehensive analysis relating to various input printing parameters on microstructural, physical and mechanical properties of additively manufactured 17–4 PH stainless steel to improve the printability and processability via AM.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3