Study on the polymer material infiltrating metallic parts by selective laser sintering of 3D printing

Author:

Chen Jibing,Wan Nong,Li Juying,He Zhanwen

Abstract

Purpose Metal green parts fabricated by indirect selective laser sintering (SLS) have lower mechanical properties, and thus, they cannot satisfy practical application. To enhance their performance, two polymer resins were compounded as a modified material to infiltrate into the metal parts by SLS. Design/methodology/approach The viscosity and glass-transition temperature were tested by a viscometer and differential scanning calorimetry, respectively. The microstructure and morphology of the interface of parts by polymer resin infiltrated were observed to be using scanning electron microscopy. The tensile strength of sample parts was tested, too. The temperature tolerances of two mass ratio polymer materials were tested and compared by thermo-gravimetric analysis (TGA). Findings Compared to those without being polymer material infiltrated, the results of test showed that the tensile strength of the metallic parts is enhanced obviously, about four times. In addition, the analysis of TGA showed that the resin of mass ratio of 2:1 can be endured up to 200° and can be used as infiltrating materials for metal parts. Originality/value Therefore, plastic injection mold and function part can be manufactured by this method.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference14 articles.

1. Indirectly fabricating metal parts using SLS and its application to machinery industry;Materials for Mechanical Engineering,2002

2. Taking a powder: laser processing;Inter J Powder Metallurgy,2000

3. Direct rapid tooling: a review of current research;Rapid Prototyping Journal,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3