The effect of powder age in high speed sintering of poly(propylene)

Author:

Williams Rhys J.,Fox Luke,Majewski Candice

Abstract

Purpose This study aims to demonstrate for the first time that the cheap, commodity polymer, poly(propylene), can be successfully processed using high speed sintering, and that it can be recycled several times through the process, with little to no detriment to either the polymer itself or the parts obtained. This is significant as a step towards the realisation of high speed sintering as a technology for high-volume manufacturing. Design/methodology/approach A poly(propylene) powder designed for laser sintering was used to build parts on a high speed sintering machine. The unsintered powder was then collected and reused. Repeating this process allowed creation of seven generations of aged powder. A variety of characterisation techniques were then used to measure polymer, powder and part properties for each generation to discern any effects arising from ageing in the machine. Findings It was found that poly(propylene) could be used successfully in high speed sintering, albeit with a low build success rate. Increased powder age was found to correlate to an increase in the build success rate, changes in microscopic and bulk powder properties and improvement to the dimensional accuracy of the parts obtained. By contrast, no discernible correlations were seen between powder age and polymer molecular weight, or between powder age and the tensile properties of parts. Originality/value This is the first report of the use of poly(propylene) in high speed sintering. It is also first study regarding powder recyclability in high speed sintering, both in general and using poly(propylene) specifically.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference24 articles.

1. Systematical mechanism of polyamide-12 aging and its micro-structural evolution during laser sintering;Polymer Testing,2018

2. Impact of extended sintering times on mechanical properties in PA-12 parts produced by powderbed fusion processes;Additive Manufacturing,2018

3. Effect of PA12 powder reuse on coalescence behaviour and microstructure of SLS parts;European Polymer Journal,2017

4. Development of a characterization approach for the sintering behavior of new thermoplastics for selective laser sintering;Physics Procedia,2010

5. The effect of build orientation and surface modification on mechanical properties of high speed sintered parts;Surface Topography: Metrology and Properties,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3