Author:
Agius Dylan,Kourousis Kyriakos I.,Wallbrink Chris
Abstract
Purpose
The purpose of this paper is to examine the mechanical behaviour of additively manufactured Ti-6Al-4V under cyclic loading. Using as-built selective laser melting (SLM) Ti-6Al-4V in engineering applications requires a detailed understanding of its elastoplastic behaviour. This preliminary study intends to create a better understanding on the cyclic plasticity phenomena exhibited by this material under symmetric and asymmetric strain-controlled cyclic loading.
Design/methodology/approach
This paper investigates experimentally the cyclic elastoplastic behaviour of as-built SLM Ti-6Al-4V under symmetric and asymmetric strain-controlled loading histories and compares it to that of wrought Ti-6Al-4V. Moreover, a plasticity model has been customised to simulate effectively the mechanical behaviour of the as-built SLM Ti-6Al-4V. This model is formulated to account for the SLM Ti-6Al-4V-specific characteristics, under the strain-controlled experiments.
Findings
The elastoplastic behaviour of the as-built SLM Ti-6Al-4V has been compared to that of the wrought material, enabling characterisation of the cyclic transient phenomena under symmetric and asymmetric strain-controlled loadings. The test results have identified a difference in the strain-controlled cyclic phenomena in the as-build SLM Ti-6Al-4V when compared to its wrought counterpart, because of a difference in their microstructure. The plasticity model offers accurate simulation of the observed experimental behaviour in the SLM material.
Research limitations/implications
Further investigation through a more extensive test campaign involving a wider set of strain-controlled loading cases, including multiaxial (biaxial) histories, is required for a more complete characterisation of the material performance.
Originality/value
The present investigation offers an advancement in the knowledge of cyclic transient effects exhibited by a typical α’ martensite SLM Ti-6Al-4V under symmetric and asymmetric strain-controlled tests. The research data and findings reported are among the very few reported so far in the literature.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference42 articles.
1. Cyclic plasticity and microstructure of as-built SLM Ti-6Al-4V: the effect of build orientation;Materials Science and Engineering: A,2017
2. Sensitivity and optimisation of the chaboche plasticity model parameters in strain-life fatigue predictions;Materials & Design,2017
3. Numerical simulation of plasticity induced crack closure: identification and discussion of parameters;Engineering Fracture Mechanics,2008
4. Armstrong, P.J. and Frederick, C.O. (1966), “A mathematical representation of the multiaxial bauschinger effect”, G.E.G.B. Report RD/B/N, 731.
5. Time independent constitutive theories for cyclic plasticity;International Journal of Plasticity,1986
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献