Electrical energy estimation of 3D printing jobs for industrial internet of things (IIoT) applications

Author:

Sunny Basil C.,Benedict Shajulin,M.P. Rajan

Abstract

Purpose This paper aims to develop an architecture for 3D printers in an Industrial Internet of Things (IIoT) controlled automated manufacturing environment. An algorithm is proposed to estimate the electrical energy consumption of 3D printing jobs, which is used, 3D Printing, Sustainable Manufacturing, Industry 4.0, Electrical Energy Estimation, IIoT to schedule printing jobs on optimal electrical tariff rates. Design/methodology/approach An IIoT-enabled architecture with connected pools of 3D printers and an Electrical Energy Estimation System (EEES) are used to estimate the electrical energy requirement of 3D printing jobs. EEES applied the combination of Maximum Likelihood Estimation and a dynamic programming–based algorithm for estimating the electrical energy consumption of 3D printing jobs. Findings The proposed algorithm decently estimates the electrical energy required for 3D printing and able to obtain optimal accuracy measures. Experiment results show that the electrical energy usage pattern can be reconstructed with the EEES. It is observed that EEES architecture reduces the peak power demand by scheduling the manufacturing process on low electrical tariff rates. Practical implications Proposed algorithm is validated with limited number of experiments. Originality/value IIoT with 3D printers in large numbers is the future technology for the automated manufacturing process where controlling, monitoring and analyzing such mass numbers becomes a challenging task. This paper fulfills the need of an architecture for industries to effectively use 3D printers as the main manufacturing tool with the help of IoT. The electrical estimation algorithm helps to schedule manufacturing processes with right electrical tariff.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference35 articles.

1. Don’t forget your electricity bills! An empirical study of characterizing energy consumption of 3d printers,2016

2. 3dgates: an instruction-level energy analysis and optimization of 3d printers;SIGOPS Oper. Syst. Rev,2017

3. Energy consumption consideration of 3D printing,2019

4. Least squares estimation of a shift in linear processes;Journal of Time Series Analysis,1994

5. On-line inference for hidden Markov models via particle filters;Journal of the Royal Statistical Society: Series B (Statistical Methodology),2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3