Author:
Goala Suraj,Sarkar Prabir
Abstract
Purpose
One of the critical reasons for the nonacceptance of additive manufacturing (AM) processes is the lack of understanding and structured knowledge of design for additive manufacturing (DfAM). This paper aims to assist designers to select the appropriate AM technology for product development or redesign. Using the suggestion provided by the design assist tool, the user’s design alterations depend on their ability to interpret the suggestion into the design without affecting the design’s primary objective.
Design/methodology/approach
This research reports the development of a tool that evaluates the efficacy values for all seven major standard AM processes by considering design parameters, benchmark standards within the processes and their material efficacies. In this research, the tool provides analytical and visual approaches to suggestion and assistance. Seventeen design parameters and seven benchmarking standards are used to evaluate the proposed product and design quality value. The full factorial design approach has been used to evaluate the DfAM aspects, design quality and design complexity.
Findings
The outcome is evaluated by the product and design quality value, material suit and material-product-design (MPD) value proposed in this work for a comparative assessment of the AM processes for a design. The higher the MPD value, the better the process. The visual aspect of the evaluation uses spider diagrams, which are evaluated analytically to confirm the results’ appropriateness with the proposed methodology.
Originality/value
The data used in the database is assumed to make the study comprehensive. The output aims to help opt for the best process out of the seven AM techniques for better and optimized manufacturing. This, as per the authors’ knowledge, is not available yet.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献