Feedforward control to suppress the leading edge bulge in photopolymerization-based additive manufacturing

Author:

Kozhevnikov Andrey,Kunnen Rudie P.J.,van Baars Gregor E.,Clercx Herman J.H.

Abstract

Purpose This study aims to examine the feasibility of feedforward actuation of the recoater blade position to alleviate the resin surface non-uniformity while moving over deep-to-shallow transitions of submerged (already cured) geometric features. Design/methodology/approach A two-dimensional computational fluid dynamics (CFD) model has been used to determine optimized blade actuation protocols to minimize the resin surface non-uniformity. An experimental setup has been designed to validate the feasibility of the proposed protocol in practice. Findings A developed protocol for the blade height actuation is applied to a rectangular stair-like configuration of the underlying part geometry. The evaluation of the actuation protocol revealed the importance of two physical length scales, the capillary length and the size of the flow recirculation cell below in the liquid resin layer below the blade. They determine, together with the length scales defining the topography (horizontal extent and depth), the optimal blade trajectory. This protocol has also shown its efficiency for application to more complicated shapes (and, potentially, for any arbitrary geometry). Practical implications This study shows that incorporation of a feedforward control scheme in the recoating system might significantly reduce (by up to 80%) the surface unevenness. Moreover, this improvement of performances does not require major modifications of the existing architecture. Originality/value The results presented in this work demonstrate the benefits of the integration of the feedforward control to minimize the leading edge bulges over underlying part geometries in stereolithography.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference37 articles.

1. Feedforward control for polymer laser sintering process using part geometry,2020

2. Development of predictive models for effective process parameter selection for single and overlapping laser clad bead geometry;Rapid Prototyping Journal,2018

3. A segregation model study of suspension-based additive manufacturing;Journal of the European Ceramic Society,2018

4. Quantifying particle segregation in sequential layers fabricated by additive manufacturing;Journal of the European Ceramic Society,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3