Artificial intelligence in business-to-business marketing: a bibliometric analysis of current research status, development and future directions

Author:

Han RunyueORCID,Lam Hugo K.S.ORCID,Zhan YuanzhuORCID,Wang YichuanORCID,Dwivedi Yogesh K.,Tan Kim HuaORCID

Abstract

PurposeAlthough the value of artificial intelligence (AI) has been acknowledged by companies, the literature shows challenges concerning AI-enabled business-to-business (B2B) marketing innovation, as well as the diversity of roles AI can play in this regard. Accordingly, this study investigates the approaches that AI can be used for enabling B2B marketing innovation.Design/methodology/approachApplying a bibliometric research method, this study systematically investigates the literature regarding AI-enabled B2B marketing. It synthesises state-of-the-art knowledge from 221 journal articles published between 1990 and 2021.FindingsApart from offering specific information regarding the most influential authors and most frequently cited articles, the study further categorises the use of AI for innovation in B2B marketing into five domains, identifying the main trends in the literature and suggesting directions for future research.Practical implicationsThrough the five identified domains, practitioners can assess their current use of AI and identify their future needs in the relevant domains in order to make appropriate decisions on how to invest in AI. Thus, the research enables companies to realise their digital marketing innovation strategies through AI.Originality/valueThe research represents one of the first large-scale reviews of relevant literature on AI in B2B marketing by (1) obtaining and comparing the most influential works based on a series of analyses; (2) identifying five domains of research into how AI can be used for facilitating B2B marketing innovation and (3) classifying relevant articles into five different time periods in order to identify both past trends and future directions in this specific field.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Computer Science Applications,Industrial relations,Management Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3