Abstract
PurposeIn the paradox of personalized services and privacy risks, what factors influence users’ decisions is considered an interesting issue worth exploring. The current study aims to empirically explore privacy behavior of social media users by developing a theoretical model based on privacy calculus theory.Design/methodology/approachPrivacy risks, conceptualized as natural risks and integrated risks, were proposed to affect the intention of privacy disclosure and protection. The model was validated through a hybrid approach of structural equation modeling (SEM)-artificial neural network (ANN) to analyze the data collected from 527 effective responses.FindingsThe results from the SEM analysis indicated that social interaction and perceived enjoyment were strong determinants of perceived benefits, which in turn played a dominant role in the intention to disclose the privacy in social media. Similarly, trust and privacy invasion experience were significantly related to perceived risks that had the most considerable effect on users’ privacy protection intention. And the following ANN models revealed consistent relationships and rankings with the SEM results.Originality/valueThis study broadened the application perspective of privacy calculus theory to identify both linear and non-linear effects of privacy risks and privacy benefits on users’ intention to disclose or protect their privacy by using a state-of-the-art methodological approach combining SEM and ANN.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献